Q. Given point charges $+8\, \mu C ,-1 \, \mu C , -$ $1 \, \mu C$ and $+8\, \mu C$ are fixed at the points $-$ $\sqrt{\frac{27}{2}} m ,-\sqrt{\frac{3}{2}} m ,+\sqrt{\frac{3}{2}} m$ and $+\sqrt{\frac{27}{2}} m$ respectively on the $y$-axis, A particle of mass $6 \times 10^{-4} \, kg$ and charge $+0.1 \mu C$ moves along the $x$-axis. If Its speed at $x$ $=+\infty$ is $v_0$. Then find the minimum value of $v_0$ in $m s ^{-1}$ for which the particle will cross the origin. $\left(\frac{1}{4} \pi \varepsilon_0=9 x\right.$ $\left.10^9\, Nm ^2 C ^{-2}\right)$
NTA AbhyasNTA Abhyas 2022
Solution: