Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given :
$\left(I\right) \quad H_{2}\left(g\right) + \frac{1}{2}O_{2}\left(g\right) \to H_{2}O\left(l\right);$
$\Delta H^{\circ}_{298K} = -285.9kJ\,mol^{-1}$
$\left(II\right) \quad H_{2}\left(g\right) + \frac{1}{2}O_{2}\left(g\right) \to H_{2}O\left(g\right);$
$\Delta H^{\circ }_{298K} = -244.8kJ\,mol^{-1}$
The molar enthalpy of vapourisation of water will be :

JEE MainJEE Main 2013Thermodynamics

Solution:

Given
$H_{2}\left(g\right) + \frac{1}{2}O_{2}\left(g\right) \to H_{2}O\left(l\right);$
$\Delta H^{\circ} = -285.9kJ\,mol^{-1}\quad\quad...\left(1\right)$
$H_{2}\left(g\right) + \frac{1}{2}O_{2}\left(g\right) \to H_{2}O\left(g\right);$
$\Delta H^{\circ } = -244.8kJ\,mol^{-1}\quad\quad...\left(2\right)$
We have to calculate
$H_{2}O\left(l\right)\to H_{2}O\left(g\right) ; \Delta H^{\circ} = ?$
On substracting eqn. $\left(2\right)$ from eqn. $\left(1\right)$ we get
$H_{2}O\left(l\right)\to H_{2}O\left(g\right) ;$
$\Delta H^{\circ } = -241.8-\left(-285.9\right)$
$= 44.1\,kJ\,mol^{-1}$