Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given, $H_2\left(g\right) + Br_2\left(g\right) \to 2HBr\left(g\right), \Delta H^{\circ}_{1}$, and standard enthalpy of condensation of bromine is $\Delta H^{\circ}_{2}$, standard enthalpy of formation of $HBr$ at $25^{\circ}C$ is

Thermodynamics

Solution:

$H_{2}\left(g\right)+Br_{2}\left(g\right)\to2HBr\left(g\right);\Delta H=\Delta H^{\circ}_{1} ....\left(i\right)$
$Br_{2}\left(g\right)\to Br_{2}\left(\ell\right);\Delta H=\Delta H^{\circ}_{2} ....\left(ii\right)$
Subtracting equation (ii) from equation (i), we get
$H_{2}\left(g\right)+Br_{2}\left(l\right)\to2HBr\left(g\right);\Delta H=\Delta H^{\circ}_{1}-\Delta H^{\circ}_{2} $
Required equation, $\frac{1}{2}H_{2}\left(g\right)+\frac{1}{2}Br_{2}\left(l\right)\to HBr\left(g\right); $
$\Delta H=\left[\frac{\Delta H^{\circ}_{1}=\Delta H^{\circ}_{2}}{2}\right]$