Q.
Given: $f(x)=4-\left(\frac{1}{2}-x\right)^{2 / 3} g(x)=\begin{cases}\frac{\tan [x]}{x}, & x \neq 0 \\ 1 \quad, & x=0\end{cases}$
$h ( x )=\{ x \} \quad k ( x )=5^{\log _2( x +3)}$
then in $[0,1]$, Lagranges Mean Value Theorem is NOT applicable to
where $[ x ]$ and $\{ x \}$ denotes the greatest integer and fraction part function.
Application of Derivatives
Solution: