Q. Given $f(x)=\begin{cases}3-\left[\cot ^{-1}\left(\frac{2 x^3-3}{x^2}\right)\right] & \text { for } x>0 \\ \left\{x^2\right\} \cos \left(e^{1 / x}\right) & \text { for } \quad x<0\end{cases}$ where $\{\}$ & [ ] denotes the fractional part and the integral part functions respectively, then which of the following statement does not hold good -
Continuity and Differentiability
Solution: