Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given below is a velocity-time graph for an object in motion along a straight line.
image
With reference to the above given figure, match the Column I (displacement/distance) with Column II (value) and select the correct answer from the codes given below.
Column I Column II
A The distance covered by the 1 $8 \,m$ object in time $t=0 \,s$ to $t=2\, s$.
B The displacement of the object 2 $+4\, m$ in time $t=0\, s$ to $t=2 \,s$.
C The displacement of the object 3 $4\, m$ in time $t=0\, s$ to $t=4 \,s$.
D The distance of object in time 4 0 $t=0\, s$ to $t=4 \,s$.

Motion in a Straight Line

Solution:

A. Distance of the object between $t=0 \,s$ to $t=2 \,s$.
$=$ Area under $v-t$ graph
$=$ Area of triangle of base $=2$ and height $=4$
$=\frac{1}{2} \times$ base $\times$ height $=\frac{1}{2} \times 2 \times 4=4\, m$
B. Displacement of the object between $t=0 \,s$ to $t=2\,s$
$=$ Distance covered in same interval $=+4 \,m$
C. For $t=0\, s$ to $t=4\, s$,
Displacement $=$ Area under $v-t$ curve $(t=0 \,s$ to
$t=2 s )+$ Area under $v-t$ curve $(t=2\, s$ to $t=4 \,s )$
$=\frac{1}{2} \times 2 \times 4+\frac{1}{2} \times 2 \times(-4)=4 \,m +(-4 \,m )=0$
D. For $t=0 \,s$ to $t=4 \,s$,
Distance covered $=$ Area under $v-t$ curve considering all areas as positive.
$=$ Area under $v-t$ curve $(t=0 \,s$ to $t=2\, s )$
$+$ Area under $v-t$ curve $(t=2\, s$ to $t=4\, s )$ $=4\, m +4\, m =8\, m$
Hence, $A \rightarrow 3, B \rightarrow 2, C \rightarrow 4$ and $D \rightarrow 1$.