Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $Given A = sin^2 \theta + cos^4 \theta , then for all real values of \theta$

IIT JEEIIT JEE 1980

Solution:

$Given, A = sin^2 \theta + (1 - sin^2 \theta)^2 $
$\Rightarrow A=sin^4 \theta -sin^2 \theta +1$
$\Rightarrow A=\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2+\frac{3}{4}$
$\Rightarrow 0 \le\Bigg(sin^2 \theta-\frac{1}{2}\Bigg)^2\le \frac{1}{4} [\because 0 \le sin^2 \theta \le 1]$
$\therefore \frac{3}{4} \le A \le 1$