Q. Given a cube $ABCDA _{1} B _{1} C _{1} D _{1}$ with lower base $ABCD$, upper base $A_{1} B_{1} C_{1} D_{1}$ and the lateral edges $AA _{1}, BB _{1}, CC _{1}$ and $DD _{1} ; M$ and $M _{1}$ are the centres of the faces $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$ respectively. $O$ is a point on the line $MM _{1}$ such that $\overrightarrow{ OA }+\overrightarrow{ OB }+\overrightarrow{ OC }+\overrightarrow{ OD }=\overrightarrow{ OM _{1}}, \overrightarrow{ OM }=\lambda \overrightarrow{ OM _{1}}$ if $\lambda$ is equal to
Vector Algebra
Solution: