Q.
Given : A circle, $2x^{2}+2y^{2}=5$ and a parabola, $y^{2}=4\sqrt{5}x$
Statement-I : An equation of a common tangent to these curves is $y= x + \sqrt{5}$.
Statement-II : If the line, $y=mx+\frac{\sqrt{5}}{m}\left(m\ne0\right)$ is their common tangent, then $m$ satisfies $m^{4}-3m^{2}+2=0.$
Solution: