Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Function whose jump (non-negative difference of LHL RHL) of discontinuity is greater than or equal to one, is/are -
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Function whose jump (non-negative difference of LHL \& RHL) of discontinuity is greater than or equal to one, is/are -
Continuity and Differentiability
A
$f(x)= \begin{cases}\frac{\left(e^{1 / x}+1\right)}{\left(e^{1 / x}-1\right)} ; & x<0 \\ \frac{(1-\cos x)}{x} ; & x > 0\end{cases}$
35%
B
$g(x)= \begin{cases}\frac{x^{1 / 3}-1}{x^{1 / 2}-1} ; & x >1 \\ \frac{\ell n x}{(x-1)} ; & \frac{1}{2}< x< 1\end{cases}$
70%
C
$u(x)= \begin{cases}\frac{\sin ^{-1} 2 x}{\tan ^{-1} 3 x} & ; \quad x \in\left(0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x} & ; \quad x< 0\end{cases}$
30%
D
$v(x)= \begin{cases}\log _3(x+2) & ; x >2 \\ \log _{1 / 2}\left(x^2+5\right) ; & x< 2\end{cases}$
80%
Solution:
(A) $ LHL =-1$ &$ RHL =0$
(B) $LHL =1$ & $RHL =2 / 3$
(C) $LHL =-1$ & $RHL =2 / 3$
(D) $ LHL =-2 \log _2 3$ & $RHL =2 \log _3 2$