Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. From the point $A(0.3)$ on the circle $x^2+4 x+(y-3)^2=0$ a chord $A B$ is drawn \& extended to a point $M$ such that $A M=2 A B$. The equation of the locus of $M$ is :

Conic Sections

Solution:

image
B lies on circle
$\left(\frac{ h }{2}\right)^2+4\left(\frac{ h }{2}\right)+\left(\frac{ k +3}{2}-3\right)^2=0 $
$\Rightarrow \frac{ h ^2}{4}+2 h +\frac{( k -3)^2}{4}=0$
Hence locus of $(h, k) x^2+8 x+(y-3)^2=0$