Q.
For $x \in\left(0, \frac{\pi}{2}\right)$, let $f_n(x)=\int n \sin 2 x\left(\sin ^{2 n-2} x-\cos ^{2 n-2} x\right) d x-\frac{1}{2^{n-1}}, n \in N$ and $f_n\left(\frac{\pi}{4}\right)=\frac{1}{2^{n-1}}$
If $m=\underset{t \rightarrow-\infty}{\text{Lim}} \left[\cot ^{-1} t\right]$, then $\int \frac{f_m(x)}{\sin ^2 x \cdot \cos ^2 x} d x$ equals
(where [] denotes greatest integer function and $c$ is constant of integration.)
Application of Derivatives
Solution: