Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For $ |x|<1, $ let $ y=1+x+{{x}^{2}}+..... $ to $ \infty , $ then $ \frac{dy}{dx}-y $ is equal to:

KEAMKEAM 2003

Solution:

$ \because $ $ y=1+x+{{x}^{2}}+....\infty $ $ \therefore $ $ y=\frac{1}{1-x}={{(1-x)}^{-1}} $ $ \Rightarrow $ $ \frac{dy}{dx}=-\frac{1}{{{(1-x)}^{2}}}(-1)=\frac{1}{{{(1-x)}^{2}}} $ $ \therefore $ $ \frac{dy}{dx}-y=\frac{1}{{{(1-x)}^{2}}}-\frac{1}{1-x}=\frac{1-1+x}{{{(1-x)}^{2}}} $ $ =\frac{x}{{{(1-x)}^{2}}} $ $ \Rightarrow $ $ \frac{dy}{dx}-y=\frac{x}{{{y}^{2}}} $