Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For what values of a does the curve $f(x)=x\left(a^2-2 a-2\right)+\cos x$ is always strictly monotonic decreasing $\forall x \in R$.

Application of Derivatives

Solution:

For strictly monotonic decreasing $f^{\prime}(x)<0$
$f^{\prime}(x)=a^2-2 a-2-\sin x < 0 \forall x \in R$
$\Rightarrow(a-1)^2 < 3+\sin x \,\, \forall x \in R$
$\Rightarrow(a-1)^2 < 2 $
$ \Rightarrow 1-\sqrt{2} < a < \sqrt{2}+1$