Thank you for reporting, we will resolve it shortly
Q.
For what value of the resistor $X$ will the equivalent resistance of
the two circuits shown be the same?
KVPYKVPY 2009
Solution:
Given circuits are Circuit $I$,
Circuit $II,$
Clearly, both circuits are different after sections $AB$ and $CD.$
So, resistances of two circuits are same, if
$R_{AB} = R_{CD}$
So, $R+X=R +\frac{6R\left(R+X\right)}{6R+R+X}$
$\Rightarrow X=\frac{6R\left(R+X\right)}{7R+X} $
$\Rightarrow 7RX +X^{2}=6X^{2}+6RX$
$\Rightarrow X^{2}+RX-6R^{2}=0$
From sridharacharya formula, we have
$\Rightarrow X=\frac{-R\pm\sqrt{R^{2}-4\left(1\right)\left(-6R^{2}\right)}}{2\left(1\right)} $
$=\frac{-R\pm\sqrt{25R^{2}} }{2}$
or $X=\frac{-R\pm5R}{2}$
$\therefore X=2R$