Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the wave shown in figure, if its position shown is at $ 4{{l}_{0}}{{\cos }^{2}}\left( \frac{\pi y}{\beta } \right) $ . Then the equation of the wave is [when speed of wave, $ {{C}_{1}} $ ]Physics Question Image

BVP MedicalBVP Medical 2015

Solution:

(c.)From the figure $ 2{{l}_{0}}{{\cos }^{2}}\left( \frac{\pi y}{\beta } \right) $ $ {{l}_{0}}{{\cos }^{2}}\left( \frac{\pi y}{\beta } \right) $ $ \frac{{{l}_{0}}}{2}{{\cos }^{2}}\left( \frac{2\pi y}{\beta } \right) $ and $ 4{{l}_{0}}{{\cos }^{2}}\left( \frac{\pi y}{\beta } \right) $ At $ {{C}_{1}} $ and $ {{C}_{2}} $ is $ +ve $ Velocity of particle $ vp=-v\left( \frac{dy}{dx} \right)=-ve $ Velocity of particle at $ x=0 $ and $ t=0 $ downwards. So, initial phase $ \phi =\pi $ So, $ y=A\sin (\omega t-kx+\pi )=A\sin (kx-\omega t) $ $ =A\sin (5\pi x-2000\pi t)=A\sin 5\pi (x-400t) $