Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the reaction, $P + Q + R\to S$
Experimental data for the measured initial rates in given below.
Expt. (P) (Q) (R) Intial rate (In $Ms^{-1})$
1 0.2 M 0.5 M 0.4 M $8.0 \times 10^{-5}$
2. 0.4 M 0.5 M 0.4 M $3.2 \times 10^{-4}$
3. 0.4 M 2.0 M 0.4 M $1.28 \times 10^{-3}$
4. 0.1 M 0.2 M 1.6 M $4.0 \times 10^{-8}$

The order of the reaction with respect of $P, Q$ and $R$ respectively is

Chemical Kinetics

Solution:

By rate law, Rate$=k\left[P\right]^{x} \left[Q\right]^{y}\left[R\right]^{z}$
$x = $ order w.r.t. $P$
$y = $ order w.r.t. $Q$
$z = $order w.r.t. $R$
(1) $8.0 \times 10^{-5} = k\left(0.2\right)^{x} \left(0.5\right)^{y} \left(0.4\right)^{z}$
(2) $3.2 \times 10^{-4} = k\left(0.4\right)^{x} \left(0.5\right)^{y} \left(0.4\right)^{z}$
(3) $1.28 \times 10^{-3} = k\left(0.4\right)^{x} \left(2.0\right)^{y} \left(0.4\right)^{z}$
(4) $4.0 \times 10^{-5} = k\left(0.1\right)^{x} \left(0.25\right)^{y} \left(0.6\right)^{z}$
From (1) and (2), $\frac{3.2 \times10^{-4}}{8.0 \times10^{-5}} = \left(2\right)^{x}$
$\left(4\right) =\left(2\right)^{x} \Rightarrow x=2$
From (2) and (3), $\frac{1.28 \times10^{-3}}{3.2 \times10^{-4}} =\left(4\right)^{y}$
$\left(4\right) =\left(4\right)^{y} \Rightarrow y = 1$
From (1) and (4), $\frac{8 \times10^{-5}}{4\times10^{-5}} = \left(2\right)^{x} \left(2\right)^{y}\left(\frac{1}{4}\right)^{x} =\left(4\right)\left(2\right)\left(\frac{1}{4}\right)^{z}$
$\Rightarrow z=1$
Thus, order w.r.t. $P = 2$
w. r. t. $Q = 1$
w. r. t. $R = 1$