Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the reaction,
$2NO\left(g\right)+2H_{2}\left(g\right)\to N_{2}\left(g\right)+2H_{2}O\left(g\right)$
The rate expression can be written in the following ways
$\frac{d\left[N_{2}\right]}{dt}=k_{1}\left[NO\right]\left[H_{2}\right];-\frac{d\left[H_{2}\right]}{dt}=k_{2}\left[NO\right]\left[H_{2}\right]$
$-\frac{d\left[NO\right]}{dt}=k_{3}\left[NO\right]\left[H_{2}\right];-\frac{d\left[H_{2}\right]}{dt}=k_{4}\left[NO\right]\left[H_{2}\right]$
The relationship between $k_1,k_2,k_2,k_4,$ is

Chemical Kinetics

Solution:

$2NO+2H_{2}\to N_{2}+2H_{2}O$
$\frac{r_{NO}}{2}=\frac{r_{H_{2}}}{2}=^{r}\frac{r_{N_{2}}}{1}= \frac{r_{H_{2}O}}{2}$
$\frac{k_{3}\times\left[NO\right]\times\left[H_{2}\right]}{2}=\frac{k_{4}\times\left[NO\right]\times\left[H_{2}\right]}{1}$
$=\frac{k_{2}\times\left[NO\right]\times\left[H_{2}\right]}{2}$
$\therefore k_{3}=k_{4}=2k_{1}=k_{2}$