Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
For the reaction 2 HI (g) leftharpoons H 2(g)+ I 2(g) the degree of dissociation (α) of HI(g) is related to equilibrium constant Kp by the expression:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For the reaction $2 HI (g) \rightleftharpoons H _{2}(g)+ I _{2}(g)$ the degree of dissociation $(\alpha)$ of HI(g) is related to equilibrium constant $K_p$ by the expression:
UPSEE
UPSEE 2017
Equilibrium
A
$\frac{1+2\sqrt{K_{p}}}{2}$
9%
B
$\sqrt{\frac{1+2K_{p}}{2}}$
14%
C
$\sqrt{\frac{2K_{p}}{1+2K_{p}}}$
18%
D
$\frac{2\sqrt{K_{p}}}{1+2\sqrt{K_{p}}}$
59%
Solution:
For the reaction :
$\because$ Partial pressure $=$ Mole fraction $\times p_{T}$
and $K_{p}=\frac{p_{ H _{2}} \times p_{ N _{2}}}{p_{( HH )}^{2}} $
$\Rightarrow p_{ H _{2}}=\left(\frac{\alpha}{2}\right) p_{T}$
$p_{ N _{2}}=\left(\frac{\alpha}{2}\right) p_{T}$
$ \Rightarrow \, p_{ HI }=(1-\alpha) p_{T} $
Hence, $ K_{p}=\frac{\left[\left(\frac{\alpha}{2}\right) \cdot p_{T}\right]^{2}}{(1-\alpha)^{2} \cdot p_{T}^{2}}$
$\Rightarrow \frac{\alpha}{1-\alpha}=2 \sqrt{K_{p}}$
On doing cross multiplication
$\alpha=2 \sqrt{K_{p}}(1-\alpha)$
or $2 \sqrt{K_{p}}-2 \sqrt{K_{p}} \cdot \alpha =\alpha$
$2 \sqrt{K_{p}}=\alpha+2 \sqrt{K_{p}}$
$2 \sqrt{K_{p}}=\alpha\left(1+2 \sqrt{K_{p}}\right) $
$\therefore \, \alpha =\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$