Q.
For the hyperbola $H : x ^2- y ^2=1$ and the ellipse $E : \frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1, a > b >0$, let the
(1) eccentricity of $E$ be reciprocal of the eccentricity of $H$, and
(2) the line $y=\sqrt{\frac{5}{2}} x+K$ be a common tangent of $E$ and $H$.
Then $4\left(a^2+b^2\right)$ is equal to
Solution: