Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the function $f\left(x\right)=sin x+2cos⁡x, \, \forall x\in \left[0,2 \pi \right]$ , we obtain

NTA AbhyasNTA Abhyas 2020Application of Derivatives

Solution:

$f\left(x\right)=sin x+2cos⁡x,\forall x\in \left[0,2 \pi \right]$
$f^{'}\left(x\right)=cos x-2sin⁡x$
$\Rightarrow f^{'}\left(x\right)$ changes its sign from positive to negative at $x=tan^{- 1}\left(\frac{1}{2}\right)\in \left(0 , \frac{\pi }{2}\right)$
So at this point, local maxima occurs
$\Rightarrow f^{'}\left(x\right)$ changes its sign from negative to positive at $x=\pi +tan^{- 1}\left(\frac{1}{2}\right)\in \left(\pi , \frac{3 \pi }{2}\right)$
So at this point, local minima occurs