Q.
For the frequency distribution :
Variate (x) :
$x_{1}$
$x_{2}$
$x_{3} ...x_{15}$
Frequency (f) :
$f_{1}$
$f_{2}$
$f_{3}...f_{15}$
where $0< x _{1}< x _{2}< x _{3}<\ldots< x _{15}=10$ and
$\displaystyle\sum_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be :
Variate (x) : | $x_{1}$ | $x_{2}$ | $x_{3} ...x_{15}$ |
Frequency (f) : | $f_{1}$ | $f_{2}$ | $f_{3}...f_{15}$ |
Solution: