Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the frequency distribution :
Variate (x) : $x_{1}$ $x_{2}$ $x_{3} ...x_{15}$
Frequency (f) : $f_{1}$ $f_{2}$ $f_{3}...f_{15}$

where $0< x _{1}< x _{2}< x _{3}<\ldots< x _{15}=10$ and $\displaystyle\sum_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be :

JEE MainJEE Main 2020Statistics

Solution:

$\because \sigma^{2} \leq \frac{1}{4}( M - m )^{2}$
Where $M$ and $m$ are upper and lower bounds
of values of any random variable.
$\therefore \sigma^{2} < \frac{1}{4}(10-0)^{2}$
$\Rightarrow 0 < \sigma < 5$
$\therefore \sigma \neq 6$.