Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the following reaction $2 X+Y \xrightarrow{k} P$ the rate of reaction is $\frac{d[P]}{d t}=k[X]$. Two moles of $X$ are mixed with one mole of $Y$ to make $1.0\, L$ of solution. At $50 \,s$, $0.5$ mole of $Y$ is left in the reaction mixture. The correct statement(s) about the reaction is(are)
(Use : $\ln\,2 = 0.693)$

JEE AdvancedJEE Advanced 2021

Solution:

image
rate $=-\frac{1}{2} \frac{ d x }{ dt }=-\frac{ dy }{ dt }=\frac{ dP }{ dt }= K [ X ]$
$-\frac{1}{2} \frac{ d x }{ dt }= K [ X ]$
$-\frac{ dx }{ dt }=2 K [ X ]= K ^{1}[ X ]$
Half life is $t =50 \,sec$
$2 K =\frac{0.653 L }{50}$
$K =\frac{0.6932}{100}=6.332 \times 10^{-3}$
$t = 5 0 \,sec$
$-\frac{ dx }{ dt }=2 K [ X ]$
$-\frac{ dx }{ dt }=2 \times 6.332 \times 10^{-3} \times 1$
$=13.864 \times 10^{-3} mole / L / Sec$
$-\frac{ dy }{ dt }= K [ X ]=6.332 \times 10^{-3}\left(\frac{1}{2}\right)$
$=3.46 \times 10^{-3} mole / L / Sec ^{-1}$