Q. For $k \in R$, let the solutions of the equation $\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$ be $\alpha$ and $\beta$, where the inverse trigonometric functions take only principal values. If the solutions of the equation $x ^2- bx -5=0$ are $\frac{1}{\alpha^2}+\frac{1}{\beta^2}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^2}$ is equal to ______
Solution: