Q.
For every integer $n$, let $a_{n}$ and $b_{n}$ be real numbers. Let function
$f: R \rightarrow R$ be given by
$f(x)=\begin{cases}a_{n}+\sin \pi x & \text { for } x \in[2 n, 2 n+1] \\ b_{n}+\cos \pi x & \text { for } x \in(2 n-1,2 n)\end{cases}$,
for all integers $n$. If $f$ is continuous, then which of the following hold(s) for all $n$ ?
JEE AdvancedJEE Advanced 2012
Solution: