Q. For every integer $n$, let $a_{n}$ and $b_{n}$ be real numbers. Let function $f: IR \rightarrow$ IR be given by $f(x) = \begin{cases} a_n + sin \pi x, & \text{for} x \in [2n, 2n+1] \\[2ex] b_n, & \text{for} x \in (2n-1, 2n) \end{cases}$, for all integers $n$. If f is continuous, then which of the following hold(s) for all $n$ ?
AIEEEAIEEE 2012
Solution: