Q.
For each positive integer $n$, let
$y_{n} = \frac{1}{n}\left(\left(n+1\right)\left(n+2\right)\cdots\left(n+n\right)\right)^{\frac{1}{n}}$
For $x \,\in\, ℝ$ let [L] be the greatest integer less than or equal to $x$. If $\displaystyle\lim_{n \to \infty} y_{n} = L$, then the value of [L] is _____ .
JEE AdvancedJEE Advanced 2018
Solution: