Q.
For any real number $x$, let $[ x ]$ denote the largest integer less than equal to $x$. Let $f$ be a real valued function defined on the interval $[-10,10]$ by
$f(x)=\begin{cases} x-[x], & \text { if }(x) \text { is odd } \\ 1+[x]-x & \text { if }(x) \text { is even }\end{cases}$
Then the value of $\frac{\pi^2}{10} \int\limits_{-10}^{10} f(x) \cos \pi x d x$ is :
Solution: