Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For any real number $x \geq 1$ the expression $\sec ^2\left(\tan ^{-1} x\right)-\tan ^2\left(\sec ^{-1} x\right)$ is equal to

Inverse Trigonometric Functions

Solution:

$ 1+\tan ^2\left(\tan ^{-1} x\right)-\left(\sec ^2\left(\sec ^{-1} x\right)-1\right) $
$1+\left(\tan \left(\tan ^{-1} x\right)\right)^2-\left(\sec \left(\sec ^{-1} x\right)\right)^2+1=1+x^2-x^2+1=2$