Q.
For any positive integer $n$, let $S_{n}:(0, \infty) \rightarrow R$ be defined by
$S_{n}(x)=\displaystyle\sum_{k=1}^{n} \cot ^{-1}\left(\frac{1+k(k+1) x^{2}}{x}\right),$
where for any $x \in R, \cot ^{-1}(x) \in(0, \pi)$ and $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is(are) TRUE?
JEE AdvancedJEE Advanced 2021
Solution: