Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For any integer n , the integral ∫ limits0πe cos2x cos3(2n+1)x dx has the value
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For any integer $ n $ , the integral $ \int\limits_{0}^{\pi}e^{\cos^2x}\cos^{3}\left(2n+1\right)x\, dx $ has the value
AMU
AMU 2015
Integrals
A
$ 1 $
B
$ \pi $
C
$ 2\pi $
D
None of these
Solution:
Let $f(x)=e^{\cos ^{2} x} \cdot \cos ^{3}(2 n+1) x$
Then, $f(\pi-x)=e^{\cos ^{2}(\pi-x)} \cdot \cos ^{3}[(2 n+1) \pi-(2 n+1) x]$
$=-e^{\cos ^{2} x} \cdot \cos ^{3}(2 n+1) x$
$\Rightarrow f(\pi-x)=-f(x)$
Hence, $\int\limits_{0}^{\pi} e^{\cos ^{2} x} \cdot \cos ^{3}(2 n+1) x d x=0$
$\left[\because \int\limits_{0}^{2 a} f(x) d x=0\right.$, if $\left.f(2 a-x)=-f(x)\right]$