Q. For any complex number $w=c+$ id, let $\arg (w) \in(-\pi, \pi]$, where $i=\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, then ordered pair $(x, y)$ lies on the circle $x^{2}+y^{2}+5 x-3 y+4=0$. Then which of the following statements is(are) TRUE?
JEE AdvancedJEE Advanced 2021
Solution: