Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For an equilateral triangle the centre is the origin and the length of altitude is a. Then, the equation of the circumcircle is:

KEAMKEAM 2006

Solution:

Centre of triangle is (0, 0).
$ \therefore $ Since triangle is an equilateral, the centre of circumcircle is also (0, 0) $ AD=a $ (given)
$ \therefore $ $ AC=BC=AB=\frac{a}{\sin 60{}^\circ }=\frac{2a}{\sqrt{3}} $

$ \therefore $ Circumradius
$=\frac{AC}{2\sin B} $
$=\frac{2a}{\sqrt{3}.2}\times \frac{2}{\sqrt{3}} $ $ (\because B=60{}^\circ ) $
$=\frac{2a}{3} $
$ \therefore $ Required equation of circumcircle is $ {{x}^{2}}+{{y}^{2}}=\frac{4{{a}^{2}}}{9}\Rightarrow 9{{x}^{2}}+9{{y}^{2}}=4{{a}^{2}} $

Solution Image