Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
For an elementary reaction 2A+3B → 4C+D the rate of appearance of C at time ‘t’ is 2.8×10-3 mol L-1S-1. Rate of disappearance of B at ‘t’ will be
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For an elementary reaction $2A+3B \to 4C+D$ the rate of appearance of $C$ at time $‘t’$ is $2.8\times10^{-3} \,mol \,L^{-1}S^{-1}$. Rate of disappearance of $B$ at ‘$t$’ will be
KCET
KCET 2020
Chemical Kinetics
A
$\frac{4}{3}(2.8\times10^{-3}) mol L^{-1}S^{-1}$
22%
B
$\frac{3}{4}(2.8\times10^{-3}) mol L^{-1}S^{-1}$
51%
C
$2(2.8\times10^{-3}) mol L^{-1}S^{-1}$
14%
D
$\frac{1}{4}(2.8\times10^{-3}) mol L^{-1}S^{-1}$
13%
Solution:
The given reaction is,
$2 A+3 B \rightarrow 4 C+D$
So, $-\frac{1}{3} \frac{d[B]}{d t}=\frac{1}{4} \frac{d[c]}{d t}$
$\Rightarrow -\frac{d[B]}{d t}=\frac{3}{4} \frac{d[C]}{d t}$
$=\frac{3}{4}\left(2.8 \times 10^{-3}\right) m o l\, L^{-1} S^{-1}$