Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For all $z \in C$ on the curve $C_1:|z|=4$, let the locus of the point $z+\frac{1}{z}$ be the curve $C_2$. Then:

JEE MainJEE Main 2023Complex Numbers and Quadratic Equations

Solution:

Let $w = z +\frac{1}{ z }=4 e ^{ i \theta}+\frac{1}{4} e ^{-i \theta}$
$\Rightarrow w =\frac{17}{4} \cos \theta+ i \frac{15}{4} \sin \theta$
So locus of w is ellipse $\frac{x^2}{\left(\frac{17}{4}\right)^2}+\frac{y^2}{\left(\frac{15}{4}\right)^2}=1$
Locus of $z$ is circle $x ^2+ y ^2=16$
So intersect at 4 points