Q.
For all $n \in N$, consider the following statements
I. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}=1-\frac{1}{2^n}$
II. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}=1+\frac{1}{2^n}$
III. $\frac{1}{2 \cdot 5}+\frac{1}{5 \cdot 8}+\frac{1}{8 \cdot 11}+\cdots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n+1}{6 n+4}$
IV. $\frac{1}{2 \cdot 5}+\frac{1}{5 \cdot 8}+\frac{1}{8 \cdot 11}+\cdots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}$
Choose the correct option.
Principle of Mathematical Induction
Solution: