Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For all n ∈ N, (1/1 ⋅ 2 ⋅ 3)+(1/2 ⋅ 3 ⋅ 4)+(1/3 ⋅ 4 ⋅ 5)+⋅s+(1/n(n+1)(n+2)) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For all $n \in N$, $\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots+\frac{1}{n(n+1)(n+2)}$ is equal to
Principle of Mathematical Induction
A
$\frac{(n+3)}{4(n+1)(n+2)}$
0%
B
$\frac{n(n+3)}{4(n+1)(n+2)}$
100%
C
$\frac{4(n+1)(n+2)}{n(n+3)}$
0%
D
None of these
0%
Solution:
Let the statement $P(n)$ be defined as
$P(n): \frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4} +\frac{1}{3 \cdot 4 \cdot 5}+\cdots $
$ +\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$
Step I For $n=1$,
$P(1): \frac{1}{1 \cdot 2 \cdot 3}=\frac{1(1+3)}{4(1+1)(1+2)}=\frac{4}{4 \times 2 \times 3}=\frac{1}{1 \cdot 2 \cdot 3}$
which is true.
Step II Let it is true for $n=k$.
$\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{k(k+1)(k+2)} $
$=\frac{k(k+3)}{4(k+1)(k+2)} .....$(i)
Step III For $n=k+1$,
$\left(\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots+\frac{1}{k(k+1)(k+2)}\right)$
$ \left.=\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \text { [using Eq. (i) }\right] $
$= \frac{k(k+3)^2+4}{4(k+1)(k+2)(k+3)} $
$= \frac{k\left(k^2+9+6 k\right)+4}{4(k+1)(k+2)(k+3)} $
$= \frac{k^3+6 k^2+9 k+4}{4(k+1)(k+2)(k+3)} $
$= \frac{(k+1)\left(k^2+5 k+4\right)}{4(k+1)(k+2)(k+3)}=\frac{k^2+5 k+4}{4(k+2)(k+3)} $
$=\frac{k^2+4 k+k+4}{4(k+2)(k+3)}=\frac{k(k+4)+(k+4)}{4(k+2)(k+3)}$
$=\frac{(k+1)(k+4)}{4(k+2)(k+3)}=\frac{(k+1)[(k+1)+3]}{4[(k+1)+1][(k+1)+2]}$
Therefore, $P(k+1)$ is true when $P(k)$ is true. Hence, from the principle of mathematical induction, the statement is true for all natural numbers $n$.