Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a reaction at equilibrium
$A ( g )\rightleftharpoons B ( g )+\frac{1}{2} C ( g )$
the relation between dissociation constant (K), degree of dissociation $(\alpha)$ and equilibrium pressure $(p)$ is given by :

JEE MainJEE Main 2022Equilibrium

Solution:

image
Now, equilibrium pressure (p),
$P = P _{ i } \times\left(1+\frac{\alpha}{2}\right)$
$\therefore P _{ A }=\left(\frac{1-\alpha}{1+\frac{\alpha}{2}}\right) P$
$P _{ B }=\left(\frac{\alpha}{1+\frac{\alpha}{2}}\right) P$
$P _{ C }=\left(\frac{\frac{\alpha}{2}}{1+\frac{\alpha}{2}}\right) P$
$\therefore K =\frac{ P _{ c }^{\frac{1}{2}} \times P _{ B }}{ P _{ A }}$
$K =\frac{\alpha^{\frac{3}{2}} p ^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$