Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a particle starting from rest, the acceleration varies with time according to relation, $ A=-a{{\omega }^{2}}\sin \omega t $ The displacement of this particle at a time t will be

CMC MedicalCMC Medical 2012

Solution:

Acceleration of the particle is given as $ A=-a\,{{\omega }^{2}}\sin \omega t $ So, the velocity of the particle; $ v=\int{A\,\,dt} $ $ =\int{(-a{{\omega }^{2}}\sin \omega t)\,\,dt} $ $ =a\,\omega \cos \omega t $ $ \therefore $ Displacement of the particle, $ x=\int{v\,dt} $ $ =\int{(a\omega \cos \omega t)\,dt} $ $ a\,\sin \omega t $