Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a $GP$, if $S_{n}=\frac{4^{n}-3^{n}}{3^{n}}$, then $t_{2}=\ldots\ldots$

MHT CETMHT CET 2019

Solution:

We have, $S_{n}=\frac{4^{n}-3^{n}}{3^{n}}$
For $ n=1, S_{1}=t_{1}=\frac{4-3}{3}=\frac{1}{3}$
For $n=2 S_{2}=t_{1}+t_{2}=\frac{4^{2}-3^{2}}{3^{2}}=\frac{7}{9}$
$\therefore t_{2}=\frac{7}{9}-t_{1}=\frac{7}{9}-\frac{1}{3}=\frac{7-3}{9}=\frac{4}{9}$