Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a gaseous phase reaction $2 A + B _{2} \rightarrow 2 AB$, the following rate data was obtained at $300\, K$
Rate of disappearance of $B_2$ (mole/litre min) Concentration
[A] [B]
i $1.8 \times 10^{-3}$ $0.015$ $0.15$
ii $1.08 \times 10^{-2}$ $0.09$ $0.15$
iii $5.4 \times 10^{-3} $ $0.015$ $0.45$

The rate constant for the reaction is

Chemical Kinetics

Solution:

image
$r=\frac{-d(B)_{2}}{d t}=1.8 \times 10^{-3}=K[A]^{x}\left[B_{2}\right]^{y}$
$1.8 \times 10^{-3}=K[0.015]^{x}[0.15]^{y}\,\,\,...(i)$
$1.08 \times 10^{-2}=K[0.09]^{x}[0.15]^{y} \,\,\,...(ii)$
$5.4 \times 10^{-3}=K[0.015]^{x}[0.45]^{y}\,\,\,...(iii)$
(i)/(ii) divide
$\frac{1.8 \times 10^{-3}= K [0.015]^{ x }[0.15]^{ y }}{1.08 \times 10^{-2}= K [0.09]^{ x }[0.15]^{ y }} $
$(0.16)=[0.16]^{ x }$
i.e., $[x=1]$
(i)/(iii) divide
$ \frac{1.8 \times 10^{-3}= K [0.015]^{ x }[0.15]^{ y }}{5.4 \times 10^{-3}= K [0.015]^{ x }[0.45]^{y}} $
$0.33=(0.33) y $
$ \therefore $ i.e., $y=1 $
$ 1.8 \times 10^{-3}= K [0.015]^{1}[0.15]^{1} $
$ K \Rightarrow \frac{1.8 \times 10^{-3}}{0.00225}$
$ \Rightarrow 0.8 \,mol ^{-1} \min ^{-1} $ litre