Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a first order reaction involving decomposition of $ {{N}_{2}}{{O}_{5}}, $ following information is available $ 2{{N}_{2}}{{O}_{5}}(g)\xrightarrow[{}]{{}}4N{{O}_{2}}(g)+{{O}_{2}}(g), $ Rate $ =k[{{N}_{2}}{{O}_{5}}] $ $ {{N}_{2}}{{O}_{5}}(g)\xrightarrow[{}]{{}}2N{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g), $ Rate $ =k[{{N}_{2}}{{O}_{5}}] $ Which of following expression is true?

VMMC MedicalVMMC Medical 2015

Solution:

$ 2{{N}_{2}}{{O}_{5}}(g)\xrightarrow[{}]{{}}4N{{O}_{2}}+{{O}_{2}}(g) $ Rate $ =-\frac{1}{2}\frac{[{{N}_{2}}{{O}_{5}}]}{dt}=k[{{N}_{2}}{{O}_{5}}] $ or Rate $ =-\frac{d[{{N}_{2}}{{O}_{5}}]}{dt}=2k[{{N}_{2}}{{O}_{5}}] $ For $ {{N}_{2}}{{O}_{5}}\xrightarrow[{}]{{}}2N{{O}_{2}}+\frac{1}{2}{{O}_{2}} $ $ -\frac{d[{{N}_{2}}{{O}_{5}}]}{dt}=k'[{{N}_{2}}{{O}_{5}}] $ or Rate $ =-\frac{d[{{N}_{2}}{{O}_{5}}]}{dt}=k'[{{N}_{2}}{{O}_{5}}] $ Since, rate must be .same, k' = 2k