Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a complex number $z$ , the product of the real parts of the roots of the equation $z^{2}-z=5-5i$ is (where, $i=\sqrt{- 1}$ )

NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations

Solution:

Equation is $z^{2}-z-5+5i=0$
$\Rightarrow z=\frac{1 \pm \sqrt{1 + 20 - 20 i}}{2}$
$\Rightarrow z=\frac{1 \pm \sqrt{\left(5 - 2 i\right)^{2}}}{2}$
$\Rightarrow z=\frac{1 \pm \left(5 - 2 i\right)}{2}=3-i,-2+i$
The required value $=-6$