Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a chemical reaction, $2X + Y \to Z$, the rate of appearance of $Z$ is $0.05 \,mol\, L^{-1}$ per min. Find the rate of disappearance of $x$ in $mol\, L^{-1}\, min^{-1}$

Chemical Kinetics

Solution:

Rate of reaction
$=-\frac{1}{2}\frac{d [X]}{dt} = -\frac{d [Y]}{dt}=+\frac{d[Z]}{dt}$ ____ (i)
$\therefore $ Rate of appearance of
$z=\frac{d [Z]}{dt} = 0.05\,mol\,L^{-1}$ per min
$\therefore $ Rate of disappearance of $x=-\frac{d [X]}{dt}$
From equation (i), we get
$-\frac{1}{2} \frac{d [X]}{dt}=\frac{s [Z]}{dt}$
$\therefore -\frac{d [X]}{dt}=2\times \frac{d[Z]}{dt}$
$=2 \times \frac{d [Z]}{dt}=2 \times 0.05=0.1\,mol\,L^{-1}\,min^{-1}$