(a) $\left(N^{T} M N\right)^{T}=N^{T} M^{T}\left(N^{T}\right)^{T}=N^{T} M^{T} N$, is symmetric if
$M$ is symmetric and skew-symmetric, if $M$ is skew-symmetric.
(b) $(M N-N M)^{T} =(M N)^{T}-(N M)^{T} $
$=N M-M N=-(M N-N M)$
$\therefore$ Skew-symmetric, when $M$ and $N$ are symmetric.
(c) $(M N)^{T}=N^{T} M^{T}=N M \neq M N$
$\therefore$ Not correct.
(d) $(\operatorname{adj} M N)=(\operatorname{adj} N) \cdot(\operatorname{adj} M)$
$\therefore$ Not correct.