Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the $x$ coordinate of the centre of mass of the non-uniform rod of length $L$ given below. The origin is taken at the left end of the rod. The density of the rod as a function of its $x$ -coordinate is $\rho =ax^{2}+bx+c$ , where $a$ , $b$ and $c$ are constants.

Question

NTA AbhyasNTA Abhyas 2020

Solution:

$\frac{\int_{0}^{ L }\left( ax ^{2}+ bx + c \right) x dx }{\int_{0}^{ L }\left( ax ^{2}+ bx + c \right) dx }$
$\frac{\int_{0}^{ L }\left( ax ^{3}+ bx ^{2}+ cx \right) d x }{\int_{0}^{ L }\left( ax ^{2}+ bx + c \right) dx }$
$=\frac{\frac{ ax ^{4}}{4}+\frac{ b x^{3}}{3}+\left.\frac{ cx ^{2}}{2}\right|_{0} ^{ L }}{\frac{ ax ^{3}}{3}+\frac{ bx ^{2}}{2}+\left. cx \right|_{0} ^{ L }}$
$=\frac{\frac{3 aL ^{4}+4 bL ^{3}+6 cL ^{2}}{12}}{\frac{2 aL ^{2}+3 bL ^{2}+6 cL }{6}}$
$=\frac{3 aL ^{3}+4 bL ^{2}+6 cL }{2\left(2 aL ^{2}+3 bL +6 c \right)}$