Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the variance of the following data: $6, 8, 10, 12, 14, 16, 18, 20, 22, 24$

Statistics

Solution:

From the given data, we can form the following table. Let $A= 14$
$x_i$ $y_{i} = \frac{x_{i} -14}{2}$ $\left(x_{i} -\bar{x}\right)$ $\left(x_{i} -\bar{x}\right)^{2}$
6 -4 -9 81
8 -3 -7 49
10 -2 -5 25
12 -1 -3 9
14 0 -1 1
16 1 1 1
18 2 3 9
20 3 5 25
22 4 7 49
24 5 9 81
Total 5 330

Therefore, Mean $\bar{x} =$ assumed mean + $ \frac{\sum\limits_{i=1}^{n} y_{i}}{n} \times h$
$= 14 + \frac{5}{10} \times2 = 15 $
and varience $\left(\sigma^{2}\right) = \frac{1}{n}\sum\limits_{i=1}^{10} \left(x_{i} \bar{x}\right)^{2}$
$ = \frac{1}{10} \times 330$
$ = 33$