Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the values of $A, B$ and $C$ in the following table for the reaction $X + Y \to Z$. The reaction is of first order w.r.t $X$ and zero order w.r.t. $Y$.
Exp. $[X] (mol\, L^{-1})$ $[Y](mol\, L^{-1})$ Initial rate $(mol \, L^{-1} s^{-1})$
1 0.1 0.1 $2 \times10^{-2}$
2. $A$ 0.2 $4 \times10^{-2}$
3. 0.4 0.4 B
4. C 0.2 $2\times 10^{-2}$

Chemical Kinetics

Solution:

Rate$ = k\left[X\right]\left[Y\right]^{0}$
Rate is independent of the conc, of $Y$ and it depends onlyon the conc, of $X$ and it is the first order reaction.
From exp. $\left(1\right), 2\times10^{-2}=k\left(0.1\right) \ldots\left(i\right)$
From exp. $\left(2\right),4\times10^{-2}=k\left(A\right) \ldots\left(ii\right)$
Dividing $\left(ii\right)$ and $\left(i\right)$, $\frac{4\times10^{-2}}{2\times10^{-2}}=\frac{k\left(A\right)}{k\left(0.1\right)}=\frac{A}{0.1}$
$\Rightarrow 2\times0.1=A$
$\Rightarrow A=0.2 mol \,L^{-1}$
From exp. $\left(3\right)$, $B = k\left(0.4\right) \ldots\left(iii\right)$
Dividing $\left(iii\right)$ and $\left(i\right)$, $\frac{B}{2\times10^{-2}}=\frac{k\left(0.4\right)}{k\left(0.1\right)}=4$
$\Rightarrow B=4\times2\times10^{-2}=8\times10^{-2}mol\,L^{-1}s^{-1}$
From exp. $\left(4\right), 2\times10^{-2}=k\left(C\right) \ldots\left(iv\right)$
Dividing $\left(iv\right)$ and $\left(i\right)$, $\frac{2\times10^{-2}}{2\times10^{-2}}=\frac{k\left(C\right)}{k\left(0.1\right)}=\frac{C}{0.1}$
$\Rightarrow C=0.1 \, mol\, L^{-1}$