Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the value of $f(0)$, so that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point in its domain.

Continuity and Differentiability

Solution:

$f(0)=\displaystyle\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}, \frac{0}{0}$
$=\displaystyle\lim _{x \rightarrow 0} \frac{2-\frac{1}{\sqrt{1-x^{2}}}}{2+\frac{1}{1+x^{2}}}=\frac{1}{3}$