Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the value of $\cos \left(\frac{x}{2}\right)$, if $\tan x=\frac{5}{12}$ and $x$ lies in third quadrant.

MHT CETMHT CET 2021

Solution:

Given, $\tan x=\frac{5}{12}$ and $x$ lies in III quadrant.
$\therefore \sin x=\frac{-5}{13} \text { and } \cos x=\frac{-12}{13}$
image
Now, $\cos x=2 \cos ^2 \frac{x}{2}-1$
$ \Rightarrow \cos ^2 \frac{x}{2}=\frac{1}{2}(\cos x+1) $
$ =\frac{1}{2}\left(\frac{-12}{13}+1\right)=\frac{1}{2}\left(\frac{1}{13}\right)=\frac{1}{26} $
$ \therefore \cos \frac{x}{2}=\sqrt{\frac{1}{26}}$